Stability and Sensitivity of Darboux Transformation without Parameter

نویسندگان

  • M. ISABEL BUENO
  • FROILÁN M. DOPICO
چکیده

STABILITY AND SENSITIVITY OF DARBOUX TRANSFORMATION WITHOUT PARAMETER M. ISABEL BUENO AND FROILÁN M. DOPICO Abstract. The monic Jacobi matrix is a tridiagonal matrix which contains the parameters of the three-term recurrence relation satisfied by the sequence of monic polynomials orthogonal with respect to a measure. Darboux transformation without parameter changes a monic Jacobi matrix associated with a measure into the monic Jacobi matrix associated with . This transformation has been used in several numerical problems as in the computation of Gaussian quadrature rules. In this paper, we analyze the stability of an algorithm which implements Darboux transformation without parameter numerically and we also study the sensitivity of the problem. The main result of the paper is that, although the algorithm for Darboux transformation without parameter is not backward stable, it is forward stable. This means that the forward errors are of similar magnitude to those produced by a backward stable algorithm. Moreover, bounds for the forward errors computable with low cost are presented. We also apply the results to some classical families of orthogonal polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit multiple singular periodic solutions and singular soliton solutions to KdV equation

 Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...

متن کامل

ul 2 00 1 One - parameter Darboux - transformed quantum actions in Thermodynamics

We use nonrelativistic supersymmetry, mainly Darboux transformations of the general (one-parameter) type, for the quantum oscillator thermodynamic actions. Interesting Darboux generalizations of the fundamental Planck and pure vacuum cases are discussed in some detail with relevant plots. It is shown that the one-parameter Darboux-transformed Thermodynamics refers to superpositions of boson and...

متن کامل

Darboux transformation for the NLS equation

We analyze a certain class of integral equations associated with Marchenko equations and Gel’fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unper...

متن کامل

1 Darboux Transformations for Nonlocal Two – Dimensional Toda Lattice

The technique of Darboux transformation is applied to nonlocal partner of two–dimensional periodic A n−1 Toda lattice. This system is shown to admit a representation as the compatibility conditions of direct and dual overdetermined linear systems with quantized spectral parameter. The generalization of the Darboux transformation technique on linear equations of such a kind is given. The solutio...

متن کامل

One-parameter Darboux transformations in Thermodynamics

The quantum oscillator thermodynamic actions are the conjugate intensive parameters for the frequency in any frequency changing process. These oscillator actions fulfill simple Riccati equations. Interesting Darboux transformations of the fundamental Planck and pure vacuum actions are discussed here in some detail. It is shown that the one-parameter “Darboux-Transformed-Thermodynamics” refers t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006